\(\int \frac {\sqrt {a+c x^2}}{x (d+e x)} \, dx\) [321]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [F(-2)]
   Mupad [F(-1)]

Optimal result

Integrand size = 22, antiderivative size = 116 \[ \int \frac {\sqrt {a+c x^2}}{x (d+e x)} \, dx=\frac {\sqrt {c} \text {arctanh}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )}{e}+\frac {\sqrt {c d^2+a e^2} \text {arctanh}\left (\frac {a e-c d x}{\sqrt {c d^2+a e^2} \sqrt {a+c x^2}}\right )}{d e}-\frac {\sqrt {a} \text {arctanh}\left (\frac {\sqrt {a+c x^2}}{\sqrt {a}}\right )}{d} \]

[Out]

-arctanh((c*x^2+a)^(1/2)/a^(1/2))*a^(1/2)/d+arctanh(x*c^(1/2)/(c*x^2+a)^(1/2))*c^(1/2)/e+arctanh((-c*d*x+a*e)/
(a*e^2+c*d^2)^(1/2)/(c*x^2+a)^(1/2))*(a*e^2+c*d^2)^(1/2)/d/e

Rubi [A] (verified)

Time = 0.07 (sec) , antiderivative size = 116, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.364, Rules used = {910, 272, 65, 214, 858, 223, 212, 739} \[ \int \frac {\sqrt {a+c x^2}}{x (d+e x)} \, dx=\frac {\sqrt {a e^2+c d^2} \text {arctanh}\left (\frac {a e-c d x}{\sqrt {a+c x^2} \sqrt {a e^2+c d^2}}\right )}{d e}-\frac {\sqrt {a} \text {arctanh}\left (\frac {\sqrt {a+c x^2}}{\sqrt {a}}\right )}{d}+\frac {\sqrt {c} \text {arctanh}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )}{e} \]

[In]

Int[Sqrt[a + c*x^2]/(x*(d + e*x)),x]

[Out]

(Sqrt[c]*ArcTanh[(Sqrt[c]*x)/Sqrt[a + c*x^2]])/e + (Sqrt[c*d^2 + a*e^2]*ArcTanh[(a*e - c*d*x)/(Sqrt[c*d^2 + a*
e^2]*Sqrt[a + c*x^2])])/(d*e) - (Sqrt[a]*ArcTanh[Sqrt[a + c*x^2]/Sqrt[a]])/d

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 739

Int[1/(((d_) + (e_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> -Subst[Int[1/(c*d^2 + a*e^2 - x^2), x], x,
 (a*e - c*d*x)/Sqrt[a + c*x^2]] /; FreeQ[{a, c, d, e}, x]

Rule 858

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rule 910

Int[((a_) + (c_.)*(x_)^2)^(p_)/(((d_.) + (e_.)*(x_))*((f_.) + (g_.)*(x_))), x_Symbol] :> Dist[(c*d^2 + a*e^2)/
(e*(e*f - d*g)), Int[(a + c*x^2)^(p - 1)/(d + e*x), x], x] - Dist[1/(e*(e*f - d*g)), Int[Simp[c*d*f + a*e*g -
c*(e*f - d*g)*x, x]*((a + c*x^2)^(p - 1)/(f + g*x)), x], x] /; FreeQ[{a, c, d, e, f, g}, x] && NeQ[e*f - d*g,
0] && NeQ[c*d^2 + a*e^2, 0] && FractionQ[p] && GtQ[p, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {\int \frac {a e-c d x}{(d+e x) \sqrt {a+c x^2}} \, dx}{d}+\frac {a \int \frac {1}{x \sqrt {a+c x^2}} \, dx}{d} \\ & = \frac {a \text {Subst}\left (\int \frac {1}{x \sqrt {a+c x}} \, dx,x,x^2\right )}{2 d}+\frac {c \int \frac {1}{\sqrt {a+c x^2}} \, dx}{e}-\left (\frac {c d}{e}+\frac {a e}{d}\right ) \int \frac {1}{(d+e x) \sqrt {a+c x^2}} \, dx \\ & = \frac {a \text {Subst}\left (\int \frac {1}{-\frac {a}{c}+\frac {x^2}{c}} \, dx,x,\sqrt {a+c x^2}\right )}{c d}+\frac {c \text {Subst}\left (\int \frac {1}{1-c x^2} \, dx,x,\frac {x}{\sqrt {a+c x^2}}\right )}{e}-\left (-\frac {c d}{e}-\frac {a e}{d}\right ) \text {Subst}\left (\int \frac {1}{c d^2+a e^2-x^2} \, dx,x,\frac {a e-c d x}{\sqrt {a+c x^2}}\right ) \\ & = \frac {\sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )}{e}+\frac {\sqrt {c d^2+a e^2} \tanh ^{-1}\left (\frac {a e-c d x}{\sqrt {c d^2+a e^2} \sqrt {a+c x^2}}\right )}{d e}-\frac {\sqrt {a} \tanh ^{-1}\left (\frac {\sqrt {a+c x^2}}{\sqrt {a}}\right )}{d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.22 (sec) , antiderivative size = 137, normalized size of antiderivative = 1.18 \[ \int \frac {\sqrt {a+c x^2}}{x (d+e x)} \, dx=-\frac {2 \sqrt {-c d^2-a e^2} \arctan \left (\frac {\sqrt {c} (d+e x)-e \sqrt {a+c x^2}}{\sqrt {-c d^2-a e^2}}\right )-2 \sqrt {a} e \text {arctanh}\left (\frac {\sqrt {c} x-\sqrt {a+c x^2}}{\sqrt {a}}\right )+\sqrt {c} d \log \left (-\sqrt {c} x+\sqrt {a+c x^2}\right )}{d e} \]

[In]

Integrate[Sqrt[a + c*x^2]/(x*(d + e*x)),x]

[Out]

-((2*Sqrt[-(c*d^2) - a*e^2]*ArcTan[(Sqrt[c]*(d + e*x) - e*Sqrt[a + c*x^2])/Sqrt[-(c*d^2) - a*e^2]] - 2*Sqrt[a]
*e*ArcTanh[(Sqrt[c]*x - Sqrt[a + c*x^2])/Sqrt[a]] + Sqrt[c]*d*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2]])/(d*e))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(304\) vs. \(2(98)=196\).

Time = 0.38 (sec) , antiderivative size = 305, normalized size of antiderivative = 2.63

method result size
default \(\frac {\sqrt {c \,x^{2}+a}-\sqrt {a}\, \ln \left (\frac {2 a +2 \sqrt {a}\, \sqrt {c \,x^{2}+a}}{x}\right )}{d}-\frac {\sqrt {\left (x +\frac {d}{e}\right )^{2} c -\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+\frac {e^{2} a +c \,d^{2}}{e^{2}}}-\frac {\sqrt {c}\, d \ln \left (\frac {-\frac {c d}{e}+c \left (x +\frac {d}{e}\right )}{\sqrt {c}}+\sqrt {\left (x +\frac {d}{e}\right )^{2} c -\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+\frac {e^{2} a +c \,d^{2}}{e^{2}}}\right )}{e}-\frac {\left (e^{2} a +c \,d^{2}\right ) \ln \left (\frac {\frac {2 e^{2} a +2 c \,d^{2}}{e^{2}}-\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+2 \sqrt {\frac {e^{2} a +c \,d^{2}}{e^{2}}}\, \sqrt {\left (x +\frac {d}{e}\right )^{2} c -\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+\frac {e^{2} a +c \,d^{2}}{e^{2}}}}{x +\frac {d}{e}}\right )}{e^{2} \sqrt {\frac {e^{2} a +c \,d^{2}}{e^{2}}}}}{d}\) \(305\)

[In]

int((c*x^2+a)^(1/2)/x/(e*x+d),x,method=_RETURNVERBOSE)

[Out]

1/d*((c*x^2+a)^(1/2)-a^(1/2)*ln((2*a+2*a^(1/2)*(c*x^2+a)^(1/2))/x))-1/d*(((x+d/e)^2*c-2/e*c*d*(x+d/e)+(a*e^2+c
*d^2)/e^2)^(1/2)-1/e*c^(1/2)*d*ln((-1/e*c*d+c*(x+d/e))/c^(1/2)+((x+d/e)^2*c-2/e*c*d*(x+d/e)+(a*e^2+c*d^2)/e^2)
^(1/2))-(a*e^2+c*d^2)/e^2/((a*e^2+c*d^2)/e^2)^(1/2)*ln((2*(a*e^2+c*d^2)/e^2-2/e*c*d*(x+d/e)+2*((a*e^2+c*d^2)/e
^2)^(1/2)*((x+d/e)^2*c-2/e*c*d*(x+d/e)+(a*e^2+c*d^2)/e^2)^(1/2))/(x+d/e)))

Fricas [A] (verification not implemented)

none

Time = 1.01 (sec) , antiderivative size = 1316, normalized size of antiderivative = 11.34 \[ \int \frac {\sqrt {a+c x^2}}{x (d+e x)} \, dx=\text {Too large to display} \]

[In]

integrate((c*x^2+a)^(1/2)/x/(e*x+d),x, algorithm="fricas")

[Out]

[1/2*(sqrt(c)*d*log(-2*c*x^2 - 2*sqrt(c*x^2 + a)*sqrt(c)*x - a) + sqrt(a)*e*log(-(c*x^2 - 2*sqrt(c*x^2 + a)*sq
rt(a) + 2*a)/x^2) + sqrt(c*d^2 + a*e^2)*log((2*a*c*d*e*x - a*c*d^2 - 2*a^2*e^2 - (2*c^2*d^2 + a*c*e^2)*x^2 + 2
*sqrt(c*d^2 + a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a))/(e^2*x^2 + 2*d*e*x + d^2)))/(d*e), -1/2*(2*sqrt(-c)*d*arct
an(sqrt(-c)*x/sqrt(c*x^2 + a)) - sqrt(a)*e*log(-(c*x^2 - 2*sqrt(c*x^2 + a)*sqrt(a) + 2*a)/x^2) - sqrt(c*d^2 +
a*e^2)*log((2*a*c*d*e*x - a*c*d^2 - 2*a^2*e^2 - (2*c^2*d^2 + a*c*e^2)*x^2 + 2*sqrt(c*d^2 + a*e^2)*(c*d*x - a*e
)*sqrt(c*x^2 + a))/(e^2*x^2 + 2*d*e*x + d^2)))/(d*e), 1/2*(sqrt(c)*d*log(-2*c*x^2 - 2*sqrt(c*x^2 + a)*sqrt(c)*
x - a) + sqrt(a)*e*log(-(c*x^2 - 2*sqrt(c*x^2 + a)*sqrt(a) + 2*a)/x^2) + 2*sqrt(-c*d^2 - a*e^2)*arctan(sqrt(-c
*d^2 - a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a)/(a*c*d^2 + a^2*e^2 + (c^2*d^2 + a*c*e^2)*x^2)))/(d*e), -1/2*(2*sqr
t(-c)*d*arctan(sqrt(-c)*x/sqrt(c*x^2 + a)) - sqrt(a)*e*log(-(c*x^2 - 2*sqrt(c*x^2 + a)*sqrt(a) + 2*a)/x^2) - 2
*sqrt(-c*d^2 - a*e^2)*arctan(sqrt(-c*d^2 - a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a)/(a*c*d^2 + a^2*e^2 + (c^2*d^2
+ a*c*e^2)*x^2)))/(d*e), 1/2*(2*sqrt(-a)*e*arctan(sqrt(-a)/sqrt(c*x^2 + a)) + sqrt(c)*d*log(-2*c*x^2 - 2*sqrt(
c*x^2 + a)*sqrt(c)*x - a) + sqrt(c*d^2 + a*e^2)*log((2*a*c*d*e*x - a*c*d^2 - 2*a^2*e^2 - (2*c^2*d^2 + a*c*e^2)
*x^2 + 2*sqrt(c*d^2 + a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a))/(e^2*x^2 + 2*d*e*x + d^2)))/(d*e), -1/2*(2*sqrt(-c
)*d*arctan(sqrt(-c)*x/sqrt(c*x^2 + a)) - 2*sqrt(-a)*e*arctan(sqrt(-a)/sqrt(c*x^2 + a)) - sqrt(c*d^2 + a*e^2)*l
og((2*a*c*d*e*x - a*c*d^2 - 2*a^2*e^2 - (2*c^2*d^2 + a*c*e^2)*x^2 + 2*sqrt(c*d^2 + a*e^2)*(c*d*x - a*e)*sqrt(c
*x^2 + a))/(e^2*x^2 + 2*d*e*x + d^2)))/(d*e), 1/2*(2*sqrt(-a)*e*arctan(sqrt(-a)/sqrt(c*x^2 + a)) + sqrt(c)*d*l
og(-2*c*x^2 - 2*sqrt(c*x^2 + a)*sqrt(c)*x - a) + 2*sqrt(-c*d^2 - a*e^2)*arctan(sqrt(-c*d^2 - a*e^2)*(c*d*x - a
*e)*sqrt(c*x^2 + a)/(a*c*d^2 + a^2*e^2 + (c^2*d^2 + a*c*e^2)*x^2)))/(d*e), -(sqrt(-c)*d*arctan(sqrt(-c)*x/sqrt
(c*x^2 + a)) - sqrt(-a)*e*arctan(sqrt(-a)/sqrt(c*x^2 + a)) - sqrt(-c*d^2 - a*e^2)*arctan(sqrt(-c*d^2 - a*e^2)*
(c*d*x - a*e)*sqrt(c*x^2 + a)/(a*c*d^2 + a^2*e^2 + (c^2*d^2 + a*c*e^2)*x^2)))/(d*e)]

Sympy [F]

\[ \int \frac {\sqrt {a+c x^2}}{x (d+e x)} \, dx=\int \frac {\sqrt {a + c x^{2}}}{x \left (d + e x\right )}\, dx \]

[In]

integrate((c*x**2+a)**(1/2)/x/(e*x+d),x)

[Out]

Integral(sqrt(a + c*x**2)/(x*(d + e*x)), x)

Maxima [A] (verification not implemented)

none

Time = 0.21 (sec) , antiderivative size = 122, normalized size of antiderivative = 1.05 \[ \int \frac {\sqrt {a+c x^2}}{x (d+e x)} \, dx=-\frac {e {\left (\frac {\sqrt {a + \frac {c d^{2}}{e^{2}}} \operatorname {arsinh}\left (\frac {2 \, c d x}{e \sqrt {\frac {a c}{e^{2}}} {\left | 2 \, e x + 2 \, d \right |}} - \frac {2 \, a}{\sqrt {\frac {a c}{e^{2}}} {\left | 2 \, e x + 2 \, d \right |}}\right )}{e} + \frac {\sqrt {a} \operatorname {arsinh}\left (\frac {a}{\sqrt {a c} {\left | x \right |}}\right )}{e} - \frac {c d \operatorname {arsinh}\left (\frac {c x}{e \sqrt {\frac {a c}{e^{2}}}}\right )}{e^{3} \sqrt {\frac {c}{e^{2}}}}\right )}}{d} \]

[In]

integrate((c*x^2+a)^(1/2)/x/(e*x+d),x, algorithm="maxima")

[Out]

-e*(sqrt(a + c*d^2/e^2)*arcsinh(2*c*d*x/(e*sqrt(a*c/e^2)*abs(2*e*x + 2*d)) - 2*a/(sqrt(a*c/e^2)*abs(2*e*x + 2*
d)))/e + sqrt(a)*arcsinh(a/(sqrt(a*c)*abs(x)))/e - c*d*arcsinh(c*x/(e*sqrt(a*c/e^2)))/(e^3*sqrt(c/e^2)))/d

Giac [F(-2)]

Exception generated. \[ \int \frac {\sqrt {a+c x^2}}{x (d+e x)} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate((c*x^2+a)^(1/2)/x/(e*x+d),x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:index.cc index_m i_lex_is_greater Error: Bad Argument Value

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+c x^2}}{x (d+e x)} \, dx=\int \frac {\sqrt {c\,x^2+a}}{x\,\left (d+e\,x\right )} \,d x \]

[In]

int((a + c*x^2)^(1/2)/(x*(d + e*x)),x)

[Out]

int((a + c*x^2)^(1/2)/(x*(d + e*x)), x)